Classifying Relations for Biomedical Named Entity Disambiguation
نویسندگان
چکیده
Named entity disambiguation concerns linking a potentially ambiguous mention of named entity in text to an unambiguous identifier in a standard database. One approach to this task is supervised classification. However, the availability of training data is often limited, and the available data sets tend to be imbalanced and, in some cases, heterogeneous. We propose a new method that distinguishes a named entity by finding the informative keywords in its surrounding context, and then trains a model to predict whether each keyword indicates the semantic class of the entity. While maintaining a comparable performance to supervised classification, this method avoids using expensive manually annotated data for each new domain, and thus achieves better portability.
منابع مشابه
Exploring Entity Relations for Named Entity Disambiguation
Named entity disambiguation is the task of linking an entity mention in a text to the correct real-world referent predefined in a knowledge base, and is a crucial subtask in many areas like information retrieval or topic detection and tracking. Named entity disambiguation is challenging because entity mentions can be ambiguous and an entity can be referenced by different surface forms. We prese...
متن کاملCan Predicate Lexicalizations Help in Named Entity Disambiguation? Position Paper
Most named entity disambiguation approaches use various resources, such as surface form catalogues and relations of entities in the target knowledge base. In contrast, predicates that describe relations between the entity mentions in text are only scarcely exploited. In this position paper, we argue how predicates, i.e., surface forms for relations in the target knowledge base, can potentially ...
متن کاملSIR-NERD: A Chinese Named Entity Recognition and Disambiguation System using a Two-Stage Method
This paper presents our SIR-NERD system for the Chinese named entity recognition and disambiguation Task in the CIPS-SIGHAN joint conference on Chinese language processing (CLP2012). Our system uses a two-stage method and some key techniques to deal with the named entity recognition and disambiguation (NERD) task. Experimental results on the test data shows that the proposed system, which incor...
متن کاملExploiting WordNet for Wikipedia-Based Named Entity Disambiguation
Entity disambiguation is an important problem in semantic analysis and natural language processing. In this paper, we propose an approach to employ features of the WordNet ontology in the task of disambiguating named entities to Wikipedia. Methods of enriching text with synonymous relations of words are explored. An analysis of the results from our experiments shows that the accuracy of the dis...
متن کاملEnhancing a biomedical information extraction system with dictionary mining and context disambiguation
Journals and conference proceedings represent the dominant mechanisms for reporting new biomedical results. The unstructured nature of such publications makes it difficult to utilize data mining or automated knowledge discovery techniques. Annotation (or markup) of these unstructured documents represents the first step in making these documents machine-analyzable. Often, however, the use of sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009